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Abstract

We present a novel technique for learning the mass
matrices in samplers obtained from discretized dy-
namics that preserve some energy function. Our
approach provides a simpler alternative to Rieman-
nian preconditioning techniques, by using existing
dynamics in the sampling step of a Monte Carlo
EM framework, and learning the mass matrices in
the M step with a novel online technique. Along
with a novel stochastic sampler based on Nosé-
Poincaré dynamics, we use this framework with
standard Hamiltonian Monte Carlo (HMC) as well
as newer stochastic algorithms such as SGHMC
and SGNHT, and show strong performance on syn-
thetic and real high-dimensional sampling scenar-
ios; we achieve sampling accuracies comparable to
Riemannian samplers while being notably faster.

Outline

•Hamiltonian Monte Carlo (HMC) for Bayesian
sampling treats the target density as an “energy
function” augmented with auxiliary “momentum”
parameters.

•A primary (hyper-)parameter of interest is the
“mass” matrix of the kinetic energy term.

•Riemannian samplers exploit the underlying
geometry by reformulating the mass in terms of the
target parameters to be sampled [1, 2, 3].

•We propose an alternative way to learn the mass
using Monte Carlo EM (MCEM) [4].

•MCEM is used to locally optimize MLE problems
where the posterior probabilities required in the E
step are not closed form.

•We perform existing dynamics derived from energy
functions in the Monte Carlo E step while holding
the mass fixed, and use the stored samples of the
momentum term to learn the mass in the M step.

Experiments

•Synthetic : Parameter estimation for 1D standard
normal distribution and 2D Bayesian logistic
regression.

•Real world: Topic modeling with hierarchical
Gamma processes (GPs).

Illustrative problem formulations

For the HMC / SGHMC energy function: max
M�0

L(θ)− (1/2) pTM−1p− (1/2) log |M |
For the SGNHT energy function: max

M�0
L(θ)− (1/2) pTM−1p− (1/2) log |M | + µ(ξ − ξ̄)2/2

Framework outline Example: HMC-EM

Input: θ(0), ε, LP_S, S_count
· Initialize M ;
repeat
· Sample p(t) ∼ N(0,M);
for i = 1 to LP_S do
· p(i)← p(i+ε−1), θ(i)← θ(i+ε−1);
· p(i+ε

2)← p(i) − ε
2∇θH(θ(i),p(i));

· θ(i+ε)← θ(i) + ε
2∇pH(θ(i),p(i+ε

2));
· p(i+ε)← p(i+ε

2) − ε
2∇θH(θ(i+ε),p(i+ε

2));
end for
· Set

(
θ(t+1),p(t+1)

)
from

(
θLP_S+ε,pLP_S+ε

)
using Metropolis-Hastings
· Store MC-EM sample p(t+1);
if (t + 1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the paper;

until forever

Representative results

Setup

•Synthetic Gaussian experiments
• 5, 000 datapoints from standard normal distribution
• Normal-Wishart priors
• Metric tensor : Observed Fisher information plus negative
Hessian of prior

•Synthetic Bayesian LR
• 5, 000 datapoints from two Gaussians with means at

[−1, 1], [1,−1], and unit covariance
• Linear classifier with weights (ω1, ω2) = [1,−1]

•For synthetics we use both HMC and stochastic
samplers with MCEM augmentations.

•Topic modeling using GP construction from [5]
• Poisson factor analysis on term-document count matrix.
• DV×N = Poi(ΦΘ), θn,k ∼ Γ(rk, pj

1−pj), rks being the GP
weights.

• Perplexities measured for 20-Newsgroups and Reuters
corpora, with stochastic samplers and MCEM.

RMSE and runtimes

•Per-iteration runtimes and RMSE for HMC,
HMC-EM and RHMC on synthetic data.

•Synthetic Gaussian dataset.
Method RMSE(µ) RMSE(τ) Time
HMC 0.0196 0.0197 0.417ms
HMC-EM 0.0115 0.0104 0.423ms
RHMC 0.0111 0.0089 5.748ms

•Synthetic regression dataset.
Method RMSE(W0) RMSE(W1) Time
HMC 0.0456 0.1290 1.435ms
HMC-EM 0.0145 0.0851 1.428ms
RHMC 0.0091 0.0574 1550ms

Results, contd.

•Test perplexities plotted against wall-clock time for
the 20-Newsgroups dataset.

•The MCEM algorithms converge to perplexities
within 3% of SGR-NPHMC [2], but are an order of
magnitude faster.
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