Abstract

We present a novel technique for learning the mass
matrices in samplers obtained from discretized dy-
namics that preserve some energy function. Our
approach provides a simpler alternative to Rieman-
nian preconditioning techniques, by using existing
dynamics in the sampling step of a Monte Carlo
EM framework, and learning the mass matrices in

the M step with a novel online technique. Along
with a novel stochastic sampler based on Noseé-
Poincaré dynamics, we use this framework with
standard Hamiltonian Monte Carlo (HMC) as well
as newer stochastic algorithms such as SGHMC
and SGNH'T, and show strong performance on syn-
thetic and real high-dimensional sampling scenar-
i0s; we achieve sampling accuracies comparable to
Riemannian samplers while being notably faster.

Outline

« Hamiltonian Monte Carlo (HMC) for Bayesian
sampling treats the target density as an “energy
function” augmented with auxiliary “momentum”
parameters.

= A primary (hyper-)parameter of interest is the
“mass’ matrix of the kinetic energy term.

« Riemannian samplers exploit the underlying
ceometry by reformulating the mass in terms of the
target parameters to be sampled |1, 2, 3|.

« We propose an alternative way to learn the mass
using Monte Carlo EM (MCEM) [4].
« MCEM is used to locally optimize MLE problems

where the posterior probabilities required in the E
step are not closed form.

« We perform existing dynamics derived from energy
functions in the Monte Carlo E step while holding
the mass fixed, and use the stored samples of the
momentum term to learn the mass in the M step.

Experiments

« oynthetic : Parameter estimation for 1D standard
normal distribution and 2D Bayesian logistic
regression.

« Real world: Topic modeling with hierarchical
Gamma processes (GPs).
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Illustrative problem formulations

For the HMC / SGHMC energy function: tax

For the SGNH'T energy function: max
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end for
. Set (3(t+1)7 p(t+1)) from (HLP_S%’ pLP_S+e)
using Metropolis-Hastings
. Store MC-EM sample p**V:
if (¢t+1) mod S_count =0 then
- Update M using MC-EM samples;
end if
- Update S_count as described in the paper;
until forever

Representative results

Setup

« Synthetic Gaussian experiments

« 9,000 datapoints from standard normal distribution

« Normal-Wishart priors

« Metric tensor : Observed Fisher information plus negative
Hessian of prior

= dynthetic Bayesian LR

= 9,000 datapoints from two Gaussians with means at
—1,1], [1, —1], and unit covariance
= Linear classifier with weights (wq, ws) = |1, —1]

« For synthetics we use both HMC and stochastic

samplers with MCEM augmentations.

= Topic modeling using GP construction from |5
« Poisson factor analysis on term-document count matrix.
« Dy« y = Poi(®0), 0,1, ~ I'(ry, 12%), ri.s being the GP
weights.
« Perplexities measured for 20-Newsgroups and Reuters
corpora, with stochastic samplers and MCEM.

RMSE and runtimes

« Per-iteration runtimes and RMSE for HMC,
HMC-EM and RHMC on synthetic data.

« oynthetic Gaussian dataset.

MeTHOD RMSE(1) RMSE(7) TIME

HMC 0.0196 0.0197 0.417MS
HMC-EM 0.0115 0.0104 0.423MS
RHMC 0.0111 0.0089 5.748MS

« Synthetic regression dataset.

MeTHOD RMSE(W,) RMSE(W;) TIME

HMC 0.0456 0.1290 1.435MS
HMC-EM  0.0145 0.0851  1.428MS
RHMC 0.0091 0.0574  1550MsS

Results, contd.
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« Test perplexities plotted against wall-clock time for
the 20-Newsgroups dataset.

« The MCEM algorithms converge to perplexities
within 3% of SGR-NPHMC [2], but are an order of
magnitude faster.
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